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Executive summary

Agentic Artificial Intelligence (Al) refers to advanced
Al systems characterised by autonomous
operation, contextual reasoning, and goal-directed
behaviour. Unlike traditionally trained Al, Agentic
Al systems exhibit capabilities such as planning,
decision-making under uncertainty, and adaptive
interaction with dynamic environments. Powered
by Large Language Models (LLMs), these agents can
interpret complex tasks, generate internal Chain-of-
Thought (CaT), and execute actions independently.
The agentic paradigm emphasises reasoning and
intentionality, self-directed problem solving, and
interactive collaboration, distinguishing it from
reactive or purely supervised Al systems.

Agentic Al systems are characterised by three
foundational attributes: autonomy, enabling them
to operate with minimal human intervention;
collaboration, allowing them to work cooperatively
with humans and other systems; and adaptability,
which empowers them to learn and evolve within
dynamic, real-world environments. These systems
function through a cyclic workflow comprising six
main interconnected stages.

1. Perception, where the system senses
and interprets multi-modal data from its
environment.

2. Reasoning, which involves generating chains
of thought, making decisions, and solving
problems based on available information.

3. Planning, where the system sets goals and
determines the optimal sequence of actions to
achieve them strategically.

4. Execution, which enables the system to

autonomously implement these actions in real
or virtual environments.

5. Learning, where the system continuously
improves its performance by acquiring new
knowledge and adapting to changes.

6. Interaction, ensures effective communication
and collaboration with humans and other
systems, completing the cycle and enabling
continuous refinement of capabilities.

Despite its demonstrated value in operational
domains such as finance, sales, and customer
support, the potential of Agentic Al remains largely
unutilised in industrial sectors like advanced
manufacturing. However, it holds significant promise
for transforming shopfloor operations, enabling
more intelligent, adaptive, and autonomous
decision-making. To fully unlock the potential
of Agentic Al, opportunities can be identified
especially in scenarios requiring real-time decision-
making; complex, repetitive, or time-intensive
process automation; cross-team coordination; and
continuous adaptation to changing conditions. The
greatest impact often occurs where Agentic Al can
outperform traditional approaches in efficiency and
scalability.

High-impact industrial use-cases of Agentic Al
can be typically captured in areas demanding high
reasoning loads, decision-making,and interpretation
of ambiguous data, as well as complex multi-step or
multi-system workflows that require orchestration
across tools and departments. They also include
dynamic or non-deterministic environments,
where conditions change frequently (e.g., adaptive



maintenance, real-time quality control) and require
flexible responses. Agentic Al also proves valuable
in reducing bottlenecks caused by frequent human
intervention, managing dynamic environments
that require flexible responses, and interpreting
data-rich processes that currently lack intelligent
analysis. Additional potential lies in processes with
feedback loops that enable continuous learning
and improvement, and in scenarios requiring
multidisciplinary collaboration to bridge gaps
between design, production, and operations.

Practical applications of Agentic Al in industry span
several high-impact areas. Advanced Agentic Al
architectures, such as Multi-Agent Systems (MAS),
are particularly well-suited for these use-cases, as
they comprise multiple autonomous agents, each
with specialised capabilities, working collaboratively
toward a common objective. For instance, in
production process optimisation, Al agents can
autonomously identify an optimal set of parameters,
reducing reliance on time-consuming methods
and costly cross-departmental coordination. For
predictive maintenance, hierarchical Al agents can
continuously monitor equipment, detect anomalies,
and coordinate maintenance tasks, inventory
checks, and supply chain actions to minimise
downtime. In supply chain management, a MAS can
enhance real-time visibility, streamline decision-
making, and proactively resolve bottlenecks
across planning, sourcing, manufacturing, and
delivery stages. Finally, in design optimisation and
compliance, Al agents can accelerate iterative design
cycles by generating and evaluating alternatives
against performance and regulatory standards,
ensuring efficiency, accuracy, and compliance
throughout the process.

This whitepaper expands each of these key
industrial use-cases by exploring the underlying
challenges, outlining Agentic Al-driven solutions,
highlighting their potential impact, and presenting
practical workflows for integrating Agentic Al into
existing processes.

As Agentic Al systems become more integrated into
industrial and organisational workflows, several
critical challenges have been identified in existing
Agentic Al approaches that may hinder their safe,
effective, and trustworthy deployment. These

include risks of losing human control and trust,
misalignment with user goals, and limitations in
planning quality and reliability. Most importantly,
governance frameworks are critical to ensure
ethical use and maintain human oversight.
Addressing these gaps requires robust strategies,
including the strategic orchestration of multiple
specialised agents for scalability and resilience. For
instance, Small Language Models (SLMs), smaller
in scale and scope than LLMs, can be effectively
deployed within MASs in hybrid collaboration with
LLMs. Leveraging domain-specific SLMs enhances
efficiency and accuracy while significantly
reducing computational and energy consumption
costs. Other recommendations include ensuring
goal alignment, and embedding transparency,
explainability, and ethical safeguards into the
system design. Simulation environments and stress
testing can be facilitated to evaluate behaviour
under edge cases for trust and safety. Moreover,
interdisciplinary collaboration among technologists,
ethicists, and domain experts is essential to build
systems that are safe, interpretable, and aligned
with human values.

While Agentic Al has already proven its value in
operational domains such as finance, sales, and
customer support, its transformative potential
in industry and manufacturing environments
remains largely untapped. This whitepaper
presents a forward-looking vision for Agentic Al
in industry. It provides a comprehensive guide
to understanding and implementing Agentic Al
in industrial contexts, and highlights practical
limitations, integration challenges, and the need
for human oversight. The paper begins by clarifying
key terminology and conceptual boundaries,
distinguishing Agentic Al from related concepts
such as Al agents and LLMs, and introducing
architectural foundations, including the emerging
role of SLMs as specialised agents within MASs.
It then offers an overview of Agentic Al systems’
core capabilities, benefits, adoption trends, and
operational workflow. Practical industrial use-
cases in advanced manufacturing are explored,
followed by a step-by-step guide for integrating
Agentic Al into existing workflows. Finally, the paper
presents strategic recommendations for adoption
and offers a forward-looking perspective on future
developments in this rapidly evolving field. A
follow-up publication will extend this whitepaper’s
scope by providing technical insights into Agentic
Al, covering agent types, architectures, and
frameworks, tailored specifically for Al developers.



Large Language Models (LLMs) have transformed
how machines understand and generate human
language, but they remain fundamentally
reactive tools. They respond to prompts
without memory, autonomy, or long-term goals.
Agentic Al systems build on LLM capabilities
by embedding them within frameworks that
provide memory, planning, and goal-directed
behaviour. These systems can reason, make
decisions, and execute multi-step tasks over
time with minimal human input, shifting from
static responders to dynamic collaborators

capable of adapting to changing objectives and
complex workflows. Comprehensive surveys
covering the foundations, architectures, and
applications of Agentic Al are presented in
[71, [2] and [3]. While the terms Al Agents and
Agentic Al are often used interchangeably, they
differ in scope. Al Agents can be considered as
individual entities designed to perform specific
tasks. Agentic Al, on the other hand, introduces
a higher level of autonomy, adaptability, and
coordination, often orchestrating multiple
agents and tools to achieve broader objectives.
Table 1 compares the key functionalities of
LLMs, Al Agents, and Agentic Al, whereas

illustrates the conceptual differences in
their respective workflows.

Table 1. A comparative analysis highlighting the distinct capabilities of LLMs, Al Agents, and Agentic Al.

Functionality Al agents Agentic Al systems
Large Language Models Software program's'de5|gned Advanced, autonomous
. to perform specific tasks systems that coordinate
trained on vast text corpora . .
. autonomously or semi- multiple agents and tools
to generate human-like text, . -
. autonomously. They often to achieve complex, high-
Description code, or answers. They excel ) .
- wrap around models like level goals. They integrate
at pattern recognition and . . . .
R LLMs and include logic for reasoning, planning, and
language understanding but I . . . .
> . . decision-making and action execution across dynamic
lack inherent goal orientation. - .
execution. environments.
Narrow and task-specific. Broad, goal-oriented, and
. - . adaptive. Maintain short and
Stateless and prompt-driven. Typically focused on a single
I ; long-term memory, track
Respond to individual prompts domain or workflow (e.g., .
. . . . progress, and dynamically
without persistent memory or booking, data retrieval). May . -
Scope . . . adjust strategies. Capable of
goals. Can simulate reasoning include short-term memory decomposing complex goals
but lack structured goal for context but limited po g plex g ’
. . - . reasoning internally, and
pursuit or long-term planning. adaptability beyond their . .
executing multi-step plans
scope. .
over time.
Highly autonomous.
Passive and reactive. Semi-autonomous. Operate with defined
No autonomy; they only Can perform predefined objectives, make decisions,
produce outputs when actions without constant and act without continuous
Autonomy . . .
prompted. Cannot initiate human input but operate human oversight. Capable
actions or make decisions within strict boundaries and of self-initiating tasks
independently. guidelines. and adapting to changing
conditions.
Typically, no real-time
learning. Most agents rely Continuous learning and
Limited or no real-time on predefined logic. Some adaptable. Incorporate
learning. Knowledge is fixed can adjust parameters or feedback, update strategies,
Learning post-training; improvements preferences within a session and improve performance
require retraining or fine- (e.g., using short-term over time, often using
tuning. memory or user feedback), reinforcement learning or
but they do not fundamentally similar techniques.
learn over time.




Standalone models. Generate
text, code, or other multi-

Independent operators.
May use APlIs or tools but

Collaborative orchestrators.
Integrate with multiple agents,
tools, and environments

Coordination modal data, but do not h . (e.g., databases, machines,
. . typically act alone without
interact with external systems orchestrating other agents human operators). Capable of
unless explicitly integrated. g g ’ multi-agent coordination and
resource allocation.
. . . E ise Al f s
Chatbots, code assistants Virtual assistants, Robotic :S:gﬁzf:ousﬁfsez:?hs
Examples ’ ’ Process Automation (RPA)

content generators.

bots, scheduling tools.

systems, multi-agent
orchestration frameworks.

As agent frameworks evolve, the distinction between “Al Agent” and
“Agentic Al” may blur in practice. For organisations, a practical approach
is to assess the degree of autonomy, adaptability, and orchestration
required for their use-case, using the taxonomy above as a guide.

(@)
LLM

(b)

Al Agent

(©

Agentic Al

Reason

Response

Observe

Reason

Reflect

Reason

Reflect

Figure 1. An illustration showing the typical workflows of LLMs (a), Al Agents (b), and Agentic Al systems (c).




A Single-Agent System (SAS) uses one LLM-
powered agent to autonomously manage an
entire task, from interpreting user prompts to
executing tools, making it ideal for focused,
domain-specific workflows. In contrast, a Multi-
Agent System (MAS) employs multiple specialised
agents that collaborate to handle complex, large-
scale, or multi-dimensional tasks, offering greater
scalability, modularity, and adaptability. MAS
architectures can be hierarchical or decentralised,
enabling agents to coordinate and allocate
resources efficiently. For instance, a hierarchical
MAS architecture can consist of a supervisor
of multiple agents, or a supervisor of multiple
supervisors of agents, depending on the use-
case complexity. Various forms of multi-agent
orchestration architectures are illustrated in

[4] and [5]. Small Language Models (SLMs),
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A single Al orchestrator plans, coordinates, and delegates tasks
across specialised agents. Each agent executes assigned tasks using
tailored tools and reports results back to the orchestrator. The design
simplifies control but introduces a single point of failure and potential
scalability limits.

L9
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Acustom architecture can be tailored for domain-specific requirements,
where agents possess specified capabilities and interact only with
defined subsets of peers. Control combines deterministic pathways
with sensitive autonomy, allowing certain agents to dynamically
choose interaction partners. This approach balances structure with
flexibility for efficient coordination.

on the other hand, are Al models designed to
process and generate natural language but are
smaller in scale and scope than LLMs. They can
be tailored for specific domains, making them
more effective than general-purpose LLMs in
handling domain-specific tasks with greater
accuracy. Within a MAS architecture, SLMs’ can
play a key role by providing cost-effective, fast-
inference, and privacy-preserving solutions for
lightweight tasks, especially on edge devices. A
hybrid MAS can be designed combining LLMs as
supervisory agents, or central orchestrators, for
high-level reasoning with SLMs as edge agents
for specialised execution, resulting in improved
responsiveness, resource efficiency, and
intelligent decision-making across distributed
environments. For readers seeking technical
depth, we recommend consulting established
MAS frameworks (e.g., SPADE, JADE, Ray) for
agentcommunication, orchestration,and conflict
resolution strategies. Integration of SLMs with
LLMs presents challenges in knowledge transfer
and consistency, which will be explored in future
technical publications.

SN
?\. /%D
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The orchestrator acts as a supervisor-of-supervisors, managing
multiple supervisory agents. Each supervisor coordinates a group
of subordinate agents, which communicate only with their assigned
supervisor. This layered structure improves scalability and control
clarity but can increase latency and complexity.

A fully connected, peer-to-peer system where agents operate
autonomously and dynamically select interaction partners. This
enables flexible coordination and distributed decision-making but
can lead to high communication overhead and reliability challenges
without robust consensus mechanisms.

Figure 2. Multi-agent orchestration architectures: (a) centralised, (b) hierarchal, (c) custom, and (d) decentralised [4] and [5]



2. The rise of Agentic Al in the enterprise:
forecasting impact and adoption growth

Al agents and Agentic Al are emerging as the next key technology adoption for
the enterprise. According to a survey presented by SS&C Blue Prism Al Trends [6],

business leaders recognise the potential of Agentic Al, where:
Of organisations plan to

Of organisations are already
leveraging Agentic Al for implement it within the
autonomous automation. next 12 months.

S

According to a Bank of America (BofA) Global Research analysis, spending on Agentic Al could
reach $155 billion by 2030 [7]. In a recent survey [8], executives say Al Agents will:

Improve customer
service and
satisfaction by

64%

According to McKinsey’s 2025 report [7], several case studies have captured the impact of deploying
Al agents in the operational business domain. The resulted impact can be summarised as follows:

>50% °60% |>S3m  20-60% | 30%

Reduction in time Potential Annual Potential gain Faster
and effort in the early productivity expected in productivity decisioning
adopter teams for core gain savings speed
system modernisation
in banking in enhancing market insights through in credit-risk memo creation

data quality improvements process at retail banks

10  Agentic Al for Industrial Applications



3. Core capabilities of
Agentic Al systems

D

Autonomy

Operate independently, executing
tasks without constant human
oversight. They exhibit self-directed
behaviour, initiating actions aligned
with predefined goals. This autonomy
makes them reliable collaborators in
dynamic environments.

Collaboration

Enable interaction between humans
and machines. They support multi-
agent coordination and can engage
in structured dialogue to simulate
digital teamwork. Through system
interoperability, Agentic Al can
integrate with other agents, platforms,
or users, facilitating cooperative
problem-solving and enhancing
productivity across distributed
workflows.

Adaptability

Handle dynamic environments
through contextual learning and real-
time adjustment. They incorporate
feedback to refine their behaviour and
improve performance over time.

Planning and reasoning

Deconstruct complex tasks into
manageable steps. They use chain-
of-thought generation and LLM-
empowered reasoning to determine
appropriate actions, make informed
decisions and produce multi-step
plans. This structured approach
enables them to navigate ambiguity,
prioritise actions, and achieve long-
term goals.

Tool use and execution

Extend beyond language generation
and bridge the gap between decision-
making and execution by interacting
with custom-built and external tools
and systems. They can invoke APIs,
execute code, and perform appropriate
actions based on context. They adjust
their approach based on evaluating
outcomes.

\ J
s

Memory and knowledge

Maintain long-term memory and
contextual awareness, allowing them
to learn from experience and build

on prior interactions. Through stateful
operation and knowledge storage,
they can recall relevant information,
track progress over time, and apply
learnt insights to future tasks.

n



4. Benefits of Agentic Al systems

Agentic Al systems can significantly transform industries across multiple dimensions including:

al

Increased
productivity
and efficiency
Continuously optimising
workflows and adjusting

operations without
human intervention.

Autonomy

Automate complex business
workflows by integrating
various tasks and systems,
triggering actions, and
finding optimal solutions

to complex problems.

Context-aware
adaptability

Responds intelligently to
changing environments,
data, and user needs
through continuous learning
and feedback integration.

Repetitive

tasks reductions

Automating routine tasks
freeing up teams’ time

to focus more on creative,
strategic, or human-
centric work.

(M
@«!)

Cost reductions

Lowering error rates and
reducing labour costs
by automating complex
decision-making and
operational tasks.

©)

) ()

Enhanced
collaboration

Facilitates smoother
coordination and
communication across
siloed and teams,
systems, and platforms,
enabling cross-functional
transformation.

Agentic Al for Industrial Applications

Y

Better
decision making

Generating Chain-of-
Thought reasoning relying
on data-driven logic rather
than human intuition alone.

N—

Personalisation

Offering full flexibility in
creating tailored, custom
Agentic workflows to
address domain-specific
needs in real time,
integrating with existing
or legacy systems.

O

Tool and system
integration

Interfaces with APls,
databases, and software
tools to execute tasks end-
to-end, not just provide
recommendations.



. The Agentic Al workflow:
how Agentic Al operates

The Agentic Al Workflow is illustrated in Figure 3
showcasing the following key stages:

1. Perception: The ability to sense and
interpret data from its environment. Includes
multi-modal input processing to form an
understanding of the context or current
state.

2. Reasoning: The ability to drawing inferences,
making judgments, or solving problems
based on available information. Includes
data analysis and pattern detection to make
logical decisions.

3. Planning: The capability to set goals and
determine a sequence of actions to achieve
them. Includes adapting strategies to reach
optimal outcomes.

Sensor
fusion

Data
feeds

Contextual
wareness in

Output
\megra&ion Multi-agent
points coordination
Human-agent
collaboration
interfaces

Natural
language
generation

(voice, visual, text)

saL
II:JSL?{S o
P processing

4. Execution: The ability to act and execute
planned actions in the real or virtual world
autonomously. This includes custom
tool integration and Retrieval Augmented
Generation (RAG) to implement decisions
and achieve objectives.

5. Learning: The ability to improve performance
over time by acquiring new knowledge or
adapting to changes. Includes supervised,
unsupervised, or reinforcement-based
learning, and the refinement of the Agentic
Al system’s models and behaviours.

6. Interaction: The means by which the Agentic
Al system communicates and collaborates
with humans or other systems. Includes NLP,
dialogue management, and understanding

effective

user intent to ensure and

meaningful exchanges.

Computer
vision

Contextual
perception

saL
database

Temporal

reasoning Causal Chain of
reasoning thought
Knowledge Reftection
base Analysis &
interpretation

\ Execution Decision
Long-term :
megmury (act) making decomposition Route
Transfer Strategy optimisation
Short-ter ) l > formulation
memory | Adaptation | learning prioritisation|  Dynamic
I N
Human-in-the-| Continuous |Learning from Task planning i replanning Muttl-agent
loop (HITL)  |Reinforcement | adaptation | feedback & & scheduling | Seguential planning
learning learning outcomes planning
Few-shot and : Digital twin
Self-supervised zero-shot Safety & Féeal_—t_lme intgegration
learning learning arety ecision Robotic
compliance | execution Autonomous
enforcement cotntrctJ} & multi-agent
Workfow ~ 2CtaNON | 4aq execution
_Tool orchestration Performance
integration monitoring & Audio
Agent as reporting processing
Specialised a tool
oonte APIs Code

execution

Figure 3. An Agentic Al system cyclic workflow throughout six stages in addition to the associated tools, techniques,

or enablers used in each stage.
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6. Unlocking the potential of
Agentic Al in industrial applications

A new frontier for
intelligent systems

While Agentic Al has already proven its value
in operational domains such as finance, sales,
and customer support, its transformative
potential in industrial environments remains
largely untapped. These domains where design,
production, maintenance, and quality control
intersect, are inherently complex. They present

unique challenges that demand intelligent,
adaptive systems capable of reasoning,
collaboration, and autonomous execution.

Unlocking Agentic Al in these settings could
redefine productivity, resilience, and innovation
on the shopfloor.

Integrating Agentic Al
into industrial workflows

To realise  this potential, industrial
environments must embrace Agentic Al
not just as a tool, but as a collaborative
partner in problem-solving. These agents
can assist in design iteration, monitor
production anomalies in real time, optimise
maintenance schedules, and even coordinate
across distributed systems. By embedding
reasoning, memory, and tool-use capabilities
into Al agents, organisations can move beyond
automation toward intelligent orchestration,
where systems proactively adapt, learn
from operational data, and contribute to
continuous improvement. The key lies in
aligning agentic capabilities with industrial
workflows, enabling Al to augment human
expertise rather than replace it. A high-
level overview of key challenges in complex
industrial environments where Agentic Al
capabilities can enable high-impact use-
cases is illustrated in Figure 4.

Complex Key
environments ) ( challenges
@ OMo 'E'
T
I""TL’EI g e
Design Production Adoption to . L
environment at Real-time decision
variability making
©
38 © 6o
Maintenance Quality control Cross-team Process
9 coordination automation
q o O
: High-impact
Agentlc AI use-cases

()

Adaptability

o

Collaboration

i

Autonomy

Figure 4. A conceptual overview of key challenges in
enable high-impact use-cases.

Agentic Al for Industrial Applications

B

Processes that are complex, repetitive,
or time-intensive

il

Tasks requiring continuous
monitoring and real-time
decision-making

Opportunities where
Agentic Al outperform
traditional approaches in
efficiency, accuracy or
scalability

complex industrial environments where Agentic Al capabilities can
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7. ldentifying high-impact use-cases of
Agentic Al systems for industrial applications

Identifying where Agentic Al can deliver the
greatest value in industrial domains, such as
manufacturing and engineering, requires more
than just spotting complexity, it demands a
strategic lens on where intelligence, autonomy,
and adaptability can truly shift performance.
High-impact use-cases often emerge where
human expertise is stretched thin, where
workflows span multiple systems, or where
decisions must be made in real time under
uncertainty. These are the areas where Agentic

® Cross-functional
; .
collaboration
g g needs

Al can act not just as an assistant, but as a
proactive collaborator navigating ambiguity,
learning from feedback, and orchestrating
actions across tools and teams. By focusing
on these criteria, organisations can prioritise
deployments that not only automate but
elevate industrial processes. Opportunities for
identifying high-impact use-cases in industrial
domains are summarised in Figure 5.

Processes that require reasoning, decision-making, or
interpretation of ambiguous data (e.g., fault diagnosis,
design validation).

Use-cases involving coordination across tools,
departments, or systems ideal for agents that can
plan and orchestrate.

Areas where engineers are repeatedly needed for
manual checks, approvals, or troubleshooting Agentic
Al can reduce friction.

Scenarios where conditions change frequently (e.g.,
adaptive maintenance, real-time quality control) and
require flexible responses.

Industrial tasks that generate large volumes of data
but lack intelligent systems to interpret and act on it
(e.g., sensor analytics, simulation outputs).

Processes where feedback loops exist and agents can
learn over time to improve performance or accuracy.

Use cases that benefit from agents acting as
bridges between design, production, and operations
enhancing communication and coordination.

Figure 5. Opportunities for identifying high-impact use-cases in industrial domains.

Agentic Al for Industrial Applications



Use-cases of agentic

Al systems for industrial
applications

This section presents four industrial use-cases

showcasing Agentic Al approaches to tackle
domain-specific challenges. The domain is

introduced for each use-case, followed by
outlining key challenges, describing the Agentic
Al-driven solution, and highlighting its potential
impact. Moreover, proposed workflows illustrate
the orchestration and execution sequence
of the Agentic Al solution to enable practical
deployment.

16



Manufacturing operations are typically planned, configured, and optimised to achieve
specific performance metrics, such as product quality or cycle time. While there
are multiple approaches to this, optimisation is typically an iterative process that
involves collecting and analysing data from various sources, often spanning multiple
teams. As manufacturing systems grow in complexity, so too does the optimisation
effort. Capturing the intricate interdependencies between process variables becomes
increasingly time-consuming and resource intensive.

Challenge

*  Multiple process parameters to be factored in
for a given process.

« Traditional process optimisation is done through
trial and error, which is time consuming.

+ Existing automated optimisation techniques
can be computationally expensive and complex.

e The optimisation process requires the
collaboration and effort of multiple
departments and teams, which can be costly.

e Compliance with best practices and policies
requires several iterations of time-consuming,
manual review.

Solution

Process optimisation typically involves a series
of iterative steps [8]. An Agentic Al system can
perform these steps under the guidance of a
supervisory framework through collaboration
between multiple domain-specific agents (i.e.,
a multi-agent system). An agent identifies that
current performance is deviating from the target
and autonomously initiates optimisation. This
continues until an optimal set of parameters is
identified, one that aligns with the objectives
defined by the human operator. Throughout the
optimisation process, human oversight ensures
that the agents' actions remain aligned with
operational goals and safety constraints.

Impact
Aspect ROI Justification Timeframe
Cost reduction High A multi-agent system automating the optimisation process reduces the Medium
time and hence costs associated with manual optimisation.
Operational High Process optimisation enables maximal quality output while minimising Long
efficiency waste. When combined with Agentic Al, the time required for
optimisation can be further reduced through streamlined, semi-
automated processes.
Data utilisation Moderate | Unlocks value from large volumes of structured and unstructured data Short
(e.g., sensor data, logs, images), although integration and data quality
challenges may limit immediate gains.
Alignment with Moderate | Al Agents, with human oversight, can assure a greater degree of Short
best practices alignment with the process-related best practices and policies.
and company
policies

A practical Agentic Al workflow for

production process optimisation

Typical  process  optimisation processes
are heavily dependent on human expertise
and intervention, particularly in identifying
inefficiencies, interpreting data, and implementing

improvements, which is often a time-consuming
and rigid process. While optimisation Machine
Learning (ML) models forecast outcomes based
on data analysis, Agentic Al goes a step further by
not just predicting outcomes but also acting on
them autonomously.



With Agentic Al, this approach can be evolved
into a dynamic, autonomous system where
intelligent agents collaborate to identify, design,
and test optimisations. Agentic Al workflows
can operate fully autonomously, acting on
deviations detected by the Al agent between
current performance and predefined targets.
Nevertheless, they are also capable of responding
to a variety of external triggers, including user
commands, data anomalies, and system events.
For instance, agents can react to: human-
initiated inputs, such as new optimisation goals
or constraints; data-driven triggers like anomaly
detection or a monitored metric exceeding a
predefined threshold; and event-based triggers,

such as the introduction of a new product
variant or machine reconfiguration. This
flexibility enables agentic systems to adapt
dynamically to both operational changes and
strategic directives. A multi-agent system
can coordinate sub-tasks across specialised
agents in analysis, design, and testing, operating
in iterative loops to refine solutions. Human
oversight remains integral, particularly for final
approvals, but the overall process is faster,
more adaptive, and capable of continuous self-
improvement. An example workflow illustrating
the orchestration and execution sequence of
the Agentic Al solution is proposed in Figure 6
to enable practical deployment.

(a) A typical high-level example of an existing workflow for production process optimisation.
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(b) An example workflow orchestrated by Agentic Al.
Potential applications are defect reduction and maintenance scheduling.

Human-initiated, data-
driven, event-based, or

14
Create sub-tasks

Process data

> |
autonomous agent triggers 4
9 99 Study process data Fetch process data
Identity Return queried data
_________ deviations
Report deviations
14 .
Design new processes ﬂ Design process Loop
> Process
_ Testorooess | teating
_____________________________ Report of test results

Human approval request for
decided process design

Process design

A4

Human approval confirmed

Report of new process design

Figure 6. An illustration for use-case 1 depicting (a) a typical high-level example of an existing workflow for production process
optimisation and (b) an example workflow orchestrated by Agentic Al. Solid arrows represent synchronous messages (requests
or actions). Dashed arrows represent return or asynchronous messages (responses).

While Agentic Al can automate many aspects of process optimisation, the degree
of autonomy achievable in practice depends on the quality and accessibility
of process data, as well as integration with existing systems. Human oversight
remains essential, particularly for final approvals and safety-critical decisions.
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To mitigate the risk of unexpected outages in critical manufacturing assets,
manufacturers adopt predictive maintenance strategies that go beyond routine
scheduled maintenance. Despite these efforts, equipment failures and unplanned
downtime can still lead to increased maintenance costs and significant disruptions
across the supply chain. Addressing these issues effectively requires timely
coordination among multiple teams and systems to minimise the impact on production.

Challenge Solution
+ Traditional methods often rely on pre-scheduled Predictive maintenance solutions require
checks, missing early signs of failure. a strategy to identify the assets and their

failure modes to be monitored, then for
their relevant data needs to be accessible to
learn the patterns [9]. A multi-agent system
can continuously monitor real-time machine
data and detect anomalies. Al Agents can
automatically initiate maintenance checks

* Current systems require human intervention
to manually interpret ML-generated anomaly
alerts.

e Operational data is often siloed, inconsistent,
and spans structured and unstructured

formats. and present a maintenance plan with tasks
needed to the maintenance team. They can

* Initiating and coordinating maintenance actions then plan and schedule the maintenance
is largely a manual process leading to delays or tasks at an optimal time to minimise
miscommunication. disruption to production. Similarly, they can

initiate inventory checks for component
availability or replacement and alert the
maintenance planning team. They can also

e Balancing maintenance with production
constraints is complex and time sensitive

+  Misalignment of procurement and supply chain coordinate with th? procurement team to
logistics can disrupt maintenance timelines prepare for any required purchases, ensuring
due to delays in ordering or delivery. that components are ordered and delivered

on time.

Impact

Aspect Justification Root cause analysis

Operational Efficiency High Decisions and plans are prepared by Al agents Short
and presented to human operators for approval,
minimising the time needed to analyse data from
various sources and make these decisions.

Unplanned Downtime High Can significantly reduce unplanned downtime in Medium
Reduction manufacturing through intelligent, autonomous
coordination and real-time decision-making.

Root Cause Analysis High Data-driven maintenance allows for better root Medium
cause analysis of underlying issues of the asset
being monitored.

Scalability Moderate Can scale this workflow to incorporate multiple Long
assets.




A practical Agentic Al workflow for
predictive maintenance

Traditional workflows follow a compartmental-
ised structure, where each stage including asset
identification, real-time monitoring, anomaly de-
tection, maintenance scheduling, and procure-
ment operates in isolation, often requiring man-
ual coordination and intervention. While Al-ena-
bled anomaly detection added intelligence to an
extent, the overall process remains reactive and
dependent on human oversight.

With Agentic Al, the workflow transforms
into a dynamic, interconnected system of
specialised agents. These agents such as the

Monitoring Agent, Anomaly Detection Agent,
and Logistics Agent collaborate autonomously,
continuously ingesting data from IoT sensors,
applying machine learning models, and
coordinating actions across maintenance and
supply chain operations. This shift enables real-
time responsiveness, predictive planning, and
adaptive decision-making, significantly reducing
latency and human dependency. The result is a
more resilient and efficient asset management
ecosystem that evolves with operational
demands. An example of a workflow illustrating
the orchestration and execution sequence of
the Agentic Al solution is proposed in Figure 7
to enable practical deployment.

(a) A typical high-level example of an existing workflow for predictive maintenance.
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(b) An example workflow orchestrated by Agentic Al.
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Figure 7. An illustration for use-case 2 depicting (a) a typical high-level example of an existing workflow for predictive
maintenance and (b) an example workflow orchestrated by Agentic Al. Solid arrows represent synchronous messages
(requests or actions). Dashed arrows represent return or asynchronous messages (responses).

The automation of maintenance actions by Agentic Al is subject to
operational safety, regulatory requirements, and the maturity of
data infrastructure. In most industrial settings, human validation
and intervention are required before executing maintenance tasks,
especially where safety or compliance is involved. Integration with
procurement and logistics systems may also be limited by external
factors, such as supplier lead times and contractual obligations.
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Supply Chain Management (SCM) is the coordination of all activities involved in the
production and delivery of a product from sourcing raw materials to delivering the
final product to customers. It involves managing a complex network of suppliers,
manufacturers, distributors, and retailers to ensure smooth, timely, and efficient
operations. SCM also integrates internal operations with external partners to align
supply and demand across the entire value chain.

Challenge

* Fragmented data across departments and
systems leads to lack of real-time visibility.
Moreover, valuable operational data is often
siloed, inaccurate and/or underutilised.

* Collaboration and communication with
multiple departments is a time-consuming,
costly task and may lead to misalignment.

e Accumulation of bottlenecks across the
product process chain may lead to delays
due to machine downtime, labour shortages,
or material unavailability.

e The volume, variety, velocity and variability of
data hitting a business every day exceeds a
human team’s ability to process it.

e Supply chain decision-making requires the
collection and analysis of complex data
by multiple departments and the speed
of human decision-making is often far too
slow for fast-moving supply chains. Accurate
analysis also requires a level of granularity
and frequency that is beyond normal
operating capabilities. As a result, data is
grouped at a higher level and focused on
only the priority Stock Keeping Units (SKUs).

Impact

Aspect ROI Justification

Efficiency High

Al agents can continually monitor external and internal events, Short
such as commodity prices and forecast changes, dynamically
altering purchasing and production plans to minimise waste
and/or potential stock-outs.

Solution

Typically, an SCM process comprises six criti-
cal stages: planning, sourcing, manufacturing,
inventory management, delivery, and returns.
Various operational philosophies, such as Lean
SCM and Six Sigma, can be applied to enhance
efficiency and quality throughout these stages
[70]. Leveraging multiple, specialised Al agents
in a multi-agent system organised into collab-
orative teams can significantly improve SCM
performance. These agents can proactively
identify and resolve bottlenecks, integrate and
analyse data of various sources, and support de-
cision-making. This is particularly impactful for
internal business processes, where Agentic Al
can drive improvements in product quality, op-
erational efficiency, and waste reduction.

Timeframe

Data Utilisation High

Al agents can dynamically update the ERP system master data Short
with real-time purchase and production lead time information,

improving the accuracy of MRP scheduling.

Sustainability

Medium

Al agents can reduce the Scope 3 footprint by altering modes of
transport and consolidating deliveries, analysing, and balancing
the impact on lead-time, cost, and inventory to ensure any
changes to the proposed schedule does not impact the
customer.

Medium




A practical Agentic Al workflow for
supply chain management

The Agentic Al workflow introduces a dynamic
and collaborative  workflow, driven by
specialised Al agents organised into functional
roles, such as the Supervisor agent acting as the
Planning Agent, Sourcing Agent, Manufacturing
Agent, Inventory Management Agent, and
Delivery and Returns Agent, all overseen by the
Supervisor Agent. These agents interact with
each other and the environment (i.e., human
operators, systems, and machines) to automate

and optimise tasks like demand forecasting,
supplier selection, production and distribution
scheduling, and inventory updates. By integrating
data from multiple sources and proactively
identifying bottlenecks, Agentic Al enables real-
time decision-making, improved operational
efficiency, and enhanced resilience across
the entire supply chain. An example workflow
illustrating the orchestration and execution
sequence of the Agentic Al solution is proposed
in Figure 8 to enable practical deployment.

(a) A typical high-level example of an existing workflow for supply chain management.
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(b) An example workflow orchestrated by Agentic Al.
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Figure 8. An illustration for use-case 3 depicting (a) a typical high-level example of an existing workflow for supply chain
management and (b) an example workflow orchestrated by Agentic Al. Solid arrows represent synchronous messages
(requests or actions). Dashed arrows represent return or asynchronous messages (responses).

While Agentic Al can enhance supply chain resilience, it is important to
recognise that some disruptions (e.g., geopolitical risks, supplier insolvency)
may remain outside the scope of any Al system. Human oversight and
contingency planning remain essential.
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The Design Optimisation and Compliance process is an iterative approach that aims
to refine a product’s performance while ensuring it meets all relevant regulatory
standards. Designers continuously adjust parameters, such as geometry, weight,
strength, and cost, based on simulation results, testing, and stakeholder feedback.
At the same time, they must integrate compliance requirements from industry
regulations, company policies, and safety standards, which adds complexity and
constraints to the design cycle. The goal is to achieve an optimal balance between
performance, manufacturability, and legal conformity.

Challenge Solution

» Designers must manually interpret and
apply complex regulatory standards,
which are often lengthy, domain-specific,
and subject to change.

* Managing last-minute design changes and
ensuring compliance can be repetitive,
resource-intensive and complex.

+ Traditional design workflows involve
repeated cycles, which can take days or
weeks, especially when simulations and
manual reviews are required.

* Valuable historical and operational data
often remains siloed or unused in decision-
making.

* Cross-functional collaboration between
design, engineering, and compliance

teams can be slow and misaligned.

The engineering design process is often
extensive and involves multiple nested
iterations, making it time-consuming and
complex [77]. By leveraging a multi-agent
system, a human designer can be supported
by agents that autonomously generate Al-
assisted design alternatives, evaluate them
against compliance standards, and optimise
based on specified requirements and
performance parameters. This collaborative
agentic approach accelerates the design
cycle, enhances accuracy, and ensures
alignment with both technical specifications
and regulatory guidelines.

Impact

Aspect Justification Timeframe

Design High Automates complex design iterations, reducing time and effort required Short

Efficiency to meet performance requirements, weight, and material constraints
while improving innovation and responsiveness.

Audit High Automates traceability and certification processes, significantly reducing | Short

Readiness preparation time and improving accuracy during audits.

Regulatory High Ensures continuous monitoring and validation of compliance with Medium

Compliance standards, reducing audit risks and manual documentation burdens.

Cost Control High While upfront deployment costs may be significant, Al agents reduce Long
operational inefficiencies such as rework, manual coordination, and
compliance-related penalties. Over time, these savings can outweigh the
initial investment.

Change Moderate Supports real-time adaptation to last-minute design changes, minimising | Medium

Management disruption and enabling product specific customisation, although
integration with legacy systems may take time.




A practical Agentic Al workflow for design
optimisation and compliance

Without the implementation of Agentic Al, the
Design Optimisation and Compliance workflow
typically involves a sequence of manual steps
including capturing requirements, selecting
design parameters for optimisation, creating
prototypes, conducting  design  reviews,
and iteratively refining the design until it is
finalised. This approach is highly iterative
and manual, requiring designers to interpret
complex regulatory standards, manage repeated
simulations, and coordinate across teams,
often resulting in long cycle times and potential
compliance risks.

The Agentic Al workflow introduces an intelligent,
collaborative system driven by multiple
specialised agents. The environment (e.g., human

(a) A typical high-level example of an existing workflow for design optimisation and compliance.
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enable rapid refinement, with the Supervisor
coordinating iterations until the design is
finalised. This agentic approach accelerates
the design cycle, ensures regulatory
alignment, and optimises performance with
minimal manual intervention. An example of
a workflow illustrating the orchestration and
execution sequence of the Agentic Al solution
is proposed in Figure 9 to enable practical
deployment.
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(b) An example workflow orchestrated by Agentic Al.
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Figure 9. An illustration for use-case 4 depicting (a) a typical high-level example of an existing workflow for design optimisation

and compliance and (b) an example workflow orchestrated by Agentic Al. Solid arrows represent synchronous messages
(requests or actions). Dashed arrows represent return or asynchronous messages (responses).

Agentic Al can accelerate design iterations and support compliance verification,
but regulatory interpretation and final sign-off typically require human expertise.
The automation of traceability and certification processes is contingent on the
digitisation and accessibility of relevant standards, which may vary across industries.
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8. A practical step-by-step guide to
building Agentic Al for industrial workflows

To design an Agentic Al workflow that integrates with existing industrial processes, a structured
approach comprising key steps is outlined below.

1. Map out the end-to-end
engineering process (e.g.,
design, simulation, production,
maintenance).

2. ldentify key stages, tools, and
dependencies.

. List roles involved (e.g., design
engineers, quality analysts,
maintenance technicians).

. Understand their goals,
decisions, and pain points.

H

1. Document how data moves
between systems and teams.

2. Highlight where decisions are ] E Outline I.nformat.lon flows
made, and what inputs they and decision points

K require.
J

. Autonomy: Where agents
can act independently (e.g.,
scheduling, anomaly detection).

. Look for tasks that require
autonomy, reasoning, or
adaptation.

. Identify bottlenecks or repetitive

. Collaboration: Where agents - .
decision-making steps.

interact with humans or other
systems (e.g., design reviews).

w

N —
J
— [ N -

Adaptability: Where conditions
change dynamically (e.g., real-
time production monitoring).

4. Planning & Reasoning: Where
multi-step logic is needed (e.g.,
root cause analysis).

. Define agent goals, inputs,

@ ) ) outputs, and interfaces.

5. Tool Use & Execution: Where O Design agent architecture — 5
agents can invoke tools or APIs
(e.g., simulation software).

. Choose models (e.g., LLMs,
SLMs) and supporting
\ infrastructure.

6. Memory & Knowledge: Where
context retention and learning
are valuable (e.g., historical fault
patterns).

. Connect agents to existing tools
(CAD, PLM, MES, etc.) and ensure
secure and reliable data access.

. Integration with legacy systems
may require additional effort
due to data silos, proprietary
protocols, and legacy hardware/
software. Organisations should
plan for phased migration
strategies and invest in
middleware or adapters to
bridge new agentic workflows
with existing infrastructure.

1. Run pilots in controlled
environments.

2. Collect feedback, refine
reasoning paths, and improve

\ adaptability.

1. Track agent performance and

[t ing.
i | — Nﬂuﬂ Monitor and scale

2. Expand deployment across
\ workflows and teams.

Agentic Al for Industrial Applications



As Agentic Al systems become increasingly
integrated into industrial and organisational
workflows, several critical challenges have been
identified that may hinder their safe, effective,
and trustworthy deployment. These challenges
span technical, ethical, and governance
dimensions, including the loss of human
oversight, misalignment with user intent,
and limitations in planning reliability, which
underscore the need for robust frameworks.
Addressing these concerns is essential to ensure
that Agentic Al systems operate transparently,
align with human values, and foster trust in
real-world applications.

1. Human control and trust challenges

Human challenges centre on psychological and
behavioural responses to Agentic Al systems.
Users often fear losing control, expertise, or
professional relevance as Al systems take
on more autonomous roles. This can lead
to resistance, withholding of knowledge,
or attempts to undermine Al functionality.
Additionally, negative attitudes toward Agentic
Al, driven by opaque decision-making, lack of
empathy, and concerns over privacy or errors,
can hinder collaboration. A widespread lack
of understanding about how these systems
operate further exacerbates the issue, resulting
in unrealistic expectations and ineffective use.
Addressing these challenges requires building
trust, improving transparency, and fostering
user education [72].

2. Agentic Al system
design challenges

Agentic Al systems may face limitations
in understanding and adapting to human
behavioural contexts. These systems often lack
sufficient knowledge about the humans they
interact with, making it difficult to delegate
tasks effectively or interpret intentions. Their
situational awareness is also limited, especially
in unstructured environments, where goals and
conditions evolve. Technical constraints, such as
insufficient transparency, lack of self-validation
mechanisms, and poor user configurability,
further impede effective collaboration. To
overcome these challenges, Agentic Al systems

must be equipped with richer contextual data,
adaptive learning capabilities, and interfaces
that support human oversight and customisation

[73].
3. Organisational challenges

Organisational challenges arise from the need
to integrate Agentic Al systems into existing
structures, cultures, and IT ecosystems.
The introduction of autonomous Al agents
demands a strategic transformation, including
redefining roles, governance mechanisms, and
operational workflows. Resistance may emerge
if employees feel threatened or uninformed,
making transparency and upskilling essential.
Structurally, organisations must ensure that
Agentic Al systems align with broader IT
strategies and are securely embedded within
infrastructure, with clear boundaries on their
autonomy. This includes managing access to
data and systems, ensuring compliance, and
maintaining control over Al actions to prevent
unintended consequences [74]. Additionally,
many organisations lack the structural agility
and governance frameworks needed to support
cross-functional Al initiatives, leading to siloed
efforts and inconsistent outcomes [75]. Other
key challenges include significant knowledge
gaps among professionals and leaders,
confusion between Generative and Agentic
Al, and the struggle with understanding the
strategic value of Agentic Al at leadership levels,
resulting in underdeveloped frameworks and
missed opportunities for Return on Investment

(RO [76].

4. Safety and misalignment
with human values

One of the central challenges in Agentic Al
safety is the risk of value misalignhment, where
Al systems develop goals and behaviours that
diverge from human values. This misalignment
can occur due to poorly specified objectives,
reward tampering, or the Al's ability to modify
its own reward functions over time. Such
systems may pursue technically correct but
ethically problematic strategies, including
deception, unauthorised resource acquisition, or
harmful instrumental subgoals. These risks are



compounded by distributional shifts between
training and deployment environments, making
it difficult to anticipate real-world behaviour.
As Agentic Al systems gain autonomy and
operate over long-time horizons, even small
misalignments can escalate into significant
harms [77].

5. Complex multi-agent orchestration

Agentic Al systems, especially when deployed in
multi-agent configurations, introduce significant
complexity. Risks can arise from miscoordination,
conflict, collusion, manipulation, and the
propagation of errors and biases. These risks are
amplified when agents interact autonomously

across systems without robust orchestration
mechanisms. The lack of strategic frameworks
to manage these interactions in industrial
applications is a core challenge, particularly
as organisations move from isolated agent
deployments to more integrated, fabric-like
architectures [75].

6. Safety-critical and
real-time decision-making

In safety-critical domains, human-in-the-loop
controls and hard-coded safety interlocks should
remain in place. Agentic Al should augment, not
replace, established safety protocols, especially
where real-time decision-making is required.



Recommendations for building Agentic Al
systems forindustrial applications addressing the
aforementioned challenges can be summarised
as follows.

1. Strategic orchestration of agents

To effectively manage complex, end-to-
end workflows, a modular architecture that
orchestrates multiple Al agents should be
adopted rather than relying on a single model
making isolated decisions. This distributed
approach enables dynamic task allocation,
allowing each agent to specialise and contribute
based on its capabilities. Such orchestration
enhances scalability, as agents can be added,
removed, or updated independently without
disrupting the overall system. It also improves
resilience, whereby if one agent fails, others
can continue functioning, ensuring continuity.
By designing systems that support collaborative
agent behaviour, organisations can build more
adaptive Al ecosystems.

2. Hybrid human-Agentic Al
framework

While Al agents can act autonomously and
efficiently to handle data-driven and repetitive
tasks, humans still need to take the lead
on making sure these decisions and actions
align with wider strategic goals. A balanced
integration of Agentic Al systems and human
oversight in organisational settings should
be enabled. To build a successful hybrid
framework, organisations can start by clearly
defining roles, allocating tasks based on
whether they require human judgment or can
be automated. They must also ensure that
workflows allow for human intervention when
needed, particularly to address errors or security
risks. Empowering employees as custodians of
Al is crucial. This involves bridging skill gaps,
fostering transparency, and embedding ethical
and regulatory guidelines. Ultimately, the role
of Agentic Al should be seen as a collaborator
rather than a replacement, and that the future
belongs to organisations that can harmonise
human ingenuity with machine efficiency [73].

3. Leveraging specialist small
language models (SLMs)

While large general-purpose models remain
valuable for broad tasks, small, domain-specific
language models (SLMs) offer distinct advantages
in specialised contexts. These models are
more computationally efficient and well-
suited for deployment in resource-constrained
environments, such as edge devices and offline
systems, enhancing data privacy and security
for sensitive business operations. Moreover, by
fine-tuning SLMs for specific domains or tasks,
higher accuracy and relevance in outputs can be
achieved while reducing latency and improving
alignment with operational constraints. This
specialist approach also enhances governance,
as smaller models are easier to audit, monitor,
and adapt to evolving requirements, making them
ideal for complex or regulated environments.

4. Goal alignment and
establishing ethical governance
for Agentic Al systems

To address safety concerns and misalignment
with human values, an approach combining
technical research, policy development,
and global coordination is recommended.
Technically, it calls for advancements in scalable
oversight, robust reward modelling, and
corrigibility mechanisms that allow Al systems to
be monitored, interrupted, and corrected. Policy-
wise, it emphasises the need for governance
frameworks that support alignment research,
enforce accountability, and foster public
deliberation on ethical standards. Organisations
adopting Agentic Al systems must critically
reassess their governance frameworks to ensure
ethical deployment and maintain human trust.
A key priority is to prevent individuals from
feeling bypassed or excluded from decisions
influenced by autonomous systems. This
requires the development of clear, transparent,
and enforceable guidelines that define how
Agentic Al should be used, monitored, and held
accountable. Ethical governance should include
mechanisms for human oversight, stakeholder
engagement, and alignment with organisational
values to ensure that agentic systems enhance,
rather than undermine, human agency and
decision-making. International collaboration



is also crucial to prevent misuse and ensure
equitable development [79].

5. Stress-testing Agentic Al
for ethical resilience

To ensure trust and safety in Agentic Al
systems, it is essential to embed ethical
reasoning capabilities and safeguards directly
into their design. One effective approach is
establishing simulation environments (i.e.,
Al experimentation sandboxes) and stress-
testing protocols that expose these systems
to edge cases, adversarial scenarios, and
morally complex dilemmas to test and refine
agentic systems in controlled environments.
By evaluating how Agentic Al behaves under
uncertainty, conflicting objectives, or ambiguous
ethicalconditions, developers canidentifyfailure
modes, refine reward functions, and improve
alignment with human values. This proactive
testing helps ensure that agentic systems
remain robust and interpretable in complex or
unpredictable real-world deployments.

6. Responsible Agentic Al integration

Continuous learning and skill development
should be prioritised to bridge knowledge gaps,
especially among leadership and technical
teams. Responsible Al frameworks must be
enhanced to reflect the unique complexities
of Agentic Al, with a strong emphasis on

transparency and ethical alignment [76].
Strategic investment in responsible Al should
be aligned with organisational goals to foster
human-centric design and ensure that ethical
considerations are not sidelined. Additionally,
adaptive governance models should be
adopted by implementing safety mechanisms
like fail-safes, and cultivating a culture that
values accountability, fairness, and privacy to
responsibly harness its transformative potential.

7. Human factors and
change management

Change management is critical for successful
adoption.  Organisations  should involve
operators and engineers early in the design
and deployment process, provide targeted
upskilling programs, and establish mechanisms
to monitor trust and acceptance over time.

8. Ethics and governance

Concrete steps for ethical governance include
implementing audit trails for agentic decisions,
establishing clear fail-safe mechanisms, and
regularly reviewing system outputs for alignment
with organisational values. Corrigibility can be
supported by designing agentic orchestration
that allows for human intervention and
overrides at critical decision points.

Successful deployment of Agentic Al in industry and
engineering will require addressing data quality, system
integration, and change management. Human expertise
remains essential for oversight and decision-making,
especially in safety-critical or regulated environments.



Agentic Al represents a paradigm shift in how
intelligent systems can be integrated into industrial
workflows. Unlike traditional automation or
standalone Al models, Agentic Al systems combine
autonomy, contextual reasoning, and collaborative
capabilities to deliver adaptive, goal-driven
solutions. This evolution enables organisations to
move beyond static process optimisation toward
dynamic, self-improving systems that can plan,
execute, and learn in real time.

Use-cases of Al Agents have been successfully
captured in domains like finance and customer
support, butits potentialinindustrialenvironments,
where  design, production, = maintenance,
and quality control intersect, remains largely
underutilised. These complex environments often
require intelligent, adaptive systems capable
of reasoning, collaboration, and autonomous
execution. Unlocking Agentic Al in these settings
could redefine productivity, resilience, and
innovation on the shop floor.

In response to this gap, this whitepaper focuses
on Agentic Al in industry by addressing three key
areas:

e Identifying Opportunities: Highlighting how
high-impact use-cases for adopting Agentic Al
in industry can be realised.

e Real-World Use-cases: Showcasing practical
use-cases of Agentic Al systems in industrial
environments.

e Practical Deployment Guide: Providing a step-
by-step framework for incorporating Agentic
Al into industrial workflows.

The analysis presented in this paper highlights
several key insights:

e Transformative Potential: Agentic Al can
significantly enhance productivity, reduce
downtime, and improve decision-making
across engineering and manufacturing
domains. Its ability to orchestrate multi-step
workflows and integrate with existing tools
positions it as a critical enabler.

e High-Impact Use-Cases: Applications such as
production process optimisation, predictive
maintenance, supply chain management,
and design compliance demonstrate tangible

benefits in efficiency, cost reduction, and
operational resilience.

e Architectural Foundations:  Multi-Agent
Systems (MAS) and the strategic use of Small
Language Models (SLMs) offer scalable,
modular, and domain-specific solutions,
ensuring flexibility and cost-effectiveness.

e Challenges and Gaps: Despite its potential,
existing Agentic Al approaches do not
address critical aspects related to practical
implementation of governance, transparency,
planning reliability, and security. Addressing
these gaps through robust frameworks and
ethical guidelines is essential for safe and
trustworthy deployment.

e Strategic Recommendations: Successful
implementation requires a holistic approach
that combines technical innovation with
organisational readiness, including clear
governance structures, explainable decision-
making, and interdisciplinary collaboration.

Limitations and open questions include:

+ Agentic Al effectiveness depends on data
quality, integration, and human acceptance.

* Not all industrial disruptions can be mitigated
by Al

* Regulatory and safety requirements may limit
full automation.

*  Further empirical validation is needed.

Future work includes a forthcoming publication
building upon the scope of this whitepaper by
targeting an Al developer audience. It will provide
a deeper technical exploration of Agentic Al,
including detailed discussions on agent types,
architectural patterns, and implementation
frameworks to support responsible and scalable
deployment.

This edition focuses on conceptual frameworks
and practical workflows. Empirical case studies
and deployment outcomes will also be included in
future versions as industrial adoption progresses.

Overall, Agentic Al is not merely an incremental
improvement over existing Al paradigms; it is a
foundational technology for the next generation
of intelligent industrial systems. The adoption
of Agentic Al can improve operational efficiency,
support innovation, and strengthen their ability
to remain competitive in an increasingly complex
industrial landscape.
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